
Lecture 23

Scalar and Vector Potentials

23.1 Scalar and Vector Potentials for Time-Harmonic
Fields

23.1.1 Introduction

Previously, we have studied the use of scalar potential Φ for electrostatic problems. Then
we learnt the use of vector potential A for magnetostatic problems. Now, we will study
the combined use of scalar and vector potential for solving time-harmonic (electrodynamic)
problems.

This is important for bridging the gap between static regime where the frequency is zero
or low, and dynamic regime where the frequency is not low. For the dynamic regime, it
is important to understand the radiation of electromagnetic fields. Electrodynamic regime
is important for studying antennas, communications, sensing, wireless power transfer ap-
plications, and many more. Hence, it is imperative that we understand how time-varying
electromagnetic fields radiate from sources.

It is also important to understand when static or circuit (quasi-static) regimes are impor-
tant. The circuit regime solves problems that have fueled the microchip industry, and it is
hence imperative to understand when electromagnetic problems can be approximated with
simple circuit problems and solved using simple laws such as KCL an KVL.

23.1.2 Scalar and Vector Potentials for Statics, A Review

Previously, we have studied scalar and vector potentials for electrostatics and magnetostatics
where the frequency ω is identically zero. The four Maxwell’s equations for a homogeneous
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medium are then

∇×E = 0 (23.1.1)

∇×H = J (23.1.2)

∇ · εE = % (23.1.3)

∇ · µH = 0 (23.1.4)

Using the knowledge that ∇×∇Φ = 0, we can construct a solution to (23.1.1) easily. Thus,
in order to satisfy the first of Maxwell’s equations or Faraday’s law above, we let

E = −∇Φ (23.1.5)

Using the above in (23.1.3), we get, for a homogeneous medium, that

∇2Φ = −%
ε

(23.1.6)

which is the Poisson’s equation for electrostatics.
By letting

µH = ∇×A (23.1.7)

since ∇ · (∇×A) = 0, the last of Maxwell’s equations above will be automatically satisfied.
And using the above in the second of Maxwell’s equations above, we get

∇×∇×A = µJ (23.1.8)

Now, using the fact that ∇×∇×A = ∇(∇·A)−∇2A, and Coulomb’s gauge that ∇·A = 0,
we arrive at

∇2A = −µJ (23.1.9)

which is the vector Poisson’s equation. Next, we will repeat the above derivation when ω 6= 0.

23.1.3 Scalar and Vector Potentials for Electrodynamics

To this end, we will start with frequency domain Maxwell’s equations with sources J and %
included, and later see how these sources J and % can radiate electromagnetic fields. Maxwell’s
equations in the frequency domain are

∇×E = −jωµH (23.1.10)

∇×H = jωεE + J (23.1.11)

∇ · µH = 0 (23.1.12)

∇ · εE = % (23.1.13)

In order to satisfy the third Maxwell’s equation, as before, we let

µH = ∇×A (23.1.14)
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Now, using (23.1.14) in (23.1.10), we have

∇× (E + jωA) = 0 (23.1.15)

Since ∇× (∇Φ) = 0, the above implies that

E = −∇Φ− jωA (23.1.16)

The above implies that the electrostatic theory of E = −∇Φ is not exactly correct when
ω 6= 0. The second term above, in accordance to Faraday’s law, is the contribution to the
electric field from the time-varying magnetic field, and hence, is the induction term.1

Furthermore, the above shows that given A and Φ, one can determine the fields H and
E. To this end, we will derive equations for A and Φ in terms of the sources J and % which
are given. Substituting (23.1.14) and (23.1.16) into (23.1.11) gives

∇×∇×A = −jωµε(−jωA−∇Φ) + µJ (23.1.17)

Or upon rearrangement, after using that ∇×∇×A = ∇∇ ·A−∇ · ∇A, we have

∇2A + ω2µεA = −µJ + jωµε∇Φ +∇∇ ·A (23.1.18)

Moreover, using (23.1.16) in (23.1.13), we have

∇ · (jωA +∇Φ) = −%
ε

(23.1.19)

In the above, (23.1.18) and (23.1.19) represent two equations for the two unknowns A and Φ,
expressed in terms of the known quantities, the sources J and % which are given. But these
equations are coupled to each other. They look complicated and are rather difficult to solve
at this point.

As in the magnetostatic case, the vector potential A is not unique. One can always
construct a new A′ = A+∇Ψ that produces the same magnetic field µH, since ∇×∇Ψ = 0.
It is quite clear that µH = ∇×A = ∇×A′. This implies that A is not unique, and one can
further show that Φ is also non-unique.

To make them unique, in addition to specifying what ∇ ×A should be in (23.1.14), we
need to specify its divergence or ∇ ·A as in the electrostatic case.2 A clever way to specify
the divergence of A is to make it simplify the complicated equations above in (23.1.18). We
choose a gauge so that the last two terms in the equation will cancel each other. Therefore,
we specify

∇ ·A = −jωµεΦ (23.1.20)

The above is judiciously chosen so that the pertinent equations (23.1.18) and (23.1.19) will
be simplified and decoupled. Then they become

∇2A + ω2µεA = −µJ (23.1.21)

∇2Φ + ω2µεΦ = −%
ε

(23.1.22)

1Notice that in electrical engineering, most concepts related to magnetic fields are inductive!
2This is akin to that given a vector A, and an arbitrary vector k, in addition to specifying what k×A is,

it is also necessary to specify what k ·A is to uniquely specify A.
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Equation (23.1.20) is known as the Lorenz gauge3 and the above equations are Helmholtz
equations with source terms. Not only are these equations simplified, they can be solved
independently of each other since they are decoupled from each other.

Equations (23.1.21) and (23.1.22) can be solved using the Green’s function method. Equa-
tion (23.1.21) actually implies three scalar equations for the three x, y, z components, namely
that

∇2Ai + ω2µεAi = −µJi (23.1.23)

where i above can be x, y, or z. Therefore, (23.1.21) and (23.1.22) together constitute
four scalar equations similar to each other. Hence, we need only to solve their point-source
response, or the Green’s function of these equations by solving

∇2g(r, r′) + β2g(r, r′) = −δ(r− r′) (23.1.24)

where β2 = ω2µε.
Previously, we have shown that when β = 0,

g(r, r′) = g(|r− r′|) =
1

4π|r− r′|
When β 6= 0, the correct solution is

g(r, r′) = g(|r− r′|) =
e−jβ|r−r

′|

4π|r− r′|
(23.1.25)

which can be verified by back substitution.
By using the principle of linear superposition, or convolution, the solutions to (23.1.21)

and (23.1.22) are then

A(r) = µ

˚
dr′J(r′)

e−jβ|r−r
′|

4π|r− r′|
(23.1.26)

Φ(r) =
1

ε

˚
dr′%(r′)

e−jβ|r−r
′|

4π|r− r′|
(23.1.27)

In the above dr′ is the shorthand notation for dx dy dz and hence, they are still volume
integrals.

23.1.4 More on Scalar and Vector Potentials

It is to be noted that Maxwell’s equations are symmetrical and this is especially so when we
add a magnetic current M to Maxwell’s equations and magnetic charge %m to Gauss’s law.4

Then the equations become

∇×E = −jωµH−M (23.1.28)

∇×H = jωεE + J (23.1.29)

∇ · µH = %m (23.1.30)

∇ · εE = % (23.1.31)

3Please note that this Lorenz is not the same as Lorentz.
4In fact, Maxwell exploited this symmetry [122].
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The above can be solved in two stages, using the principle of linear superposition. First, we
can set M = 0 and %m = 0 and solve for the fields as we have done. Second, we can set J = 0
and % = 0 and solve for the fields next. Then the total general solution is just the linear
superposition of these two solutions.

For the second case, we can define an electric vector potential F such that

D = −∇× F (23.1.32)

and a magnetic scalar potential Φm such that

H = −∇Φm − jωF (23.1.33)

By invoking duality principle, one can gather that [41]

F(r) = ε

˚
dr′M(r′)

e−jβ|r−r
′|

4π|r− r′|
(23.1.34)

Φm(r) =
1

µ

˚
dr′%m(r′)

e−jβ|r−r
′|

4π|r− r′|
(23.1.35)

As mentioned before, even though magnetic sources do not exist, they can be engineered.
In many engineering designs, it is more expeditious to think magnetic sources to enrich the
diversity of electromagnetic technologies.

23.2 When is Static Electromagnetic Theory Valid?

We have learnt in the previous section that for electrodynamics,

E = −∇Φ− jωA (23.2.1)

where the second term above on the right-hand side is due to induction, or the contribution
to the electric field from the time-varying magnetic filed. Hence, much things we learn in
potential theory that E = −∇Φ is not exactly valid. But simple potential theory that E =
−∇Φ is very useful because of its simplicity. We will study when static electromagnetic theory
can be used to model electromagnetic systems. Since the third and the fourth Maxwell’s
equations are derivable from the first two, let us first study when we can ignore the time
derivative terms in the first two of Maxwell’s equations, which, in the frequency domain, are

∇×E = −jωµH (23.2.2)

∇×H = jωεE + J (23.2.3)

When the terms multiplied by jω above can be ignored, then electrodynamics can be replaced
with static electromagnetics, which are much simpler. That is why Ampere’s law, Coulomb’s
law, and Gauss’ law were discovered first. Quasi-static electromagnetic theory eventually
gave rise to circuit theory and telegraphy technology. Circuit theory consists of elements like
resistors, capacitors, and inductors. Given that we have now seen electromagnetic theory in
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its full form, we like to ponder when we can use simple static electromagnetics to describe
electromagnetic phenomena.

Figure 23.1: The electric and magnetic fields are great contortionists around a conducting
particle deforming themselves to satisfy the boundary conditions even when the particle is
very small. Hence, ∇ ∼ 1/L.

To see this lucidly, it is best to write Maxwell’s equations in dimensionless units or the
same units. Say if we want to solve Maxwell’s equations for the fields close to an object of
size L as shown in Figure 23.1. This object can be a small particle like the sphere, or it could
be a capacitor, or an inductor, which are small; but how small should it be before we can
apply static electromagnetics?

It is clear that these E and H fields will have to satisfy boundary conditions, which is de
rigueur in the vicinity of the object as shown in Figure 23.1 even when the frequency is low or
the wavelength long. The fields become great contortionists in order to do so. Hence, we do
not expect a constant field around the object but that the field will vary on the length scale
of L. So we renormalize our length scale by this length L by defining a new dimensionless
coordinate system such that.

x′ =
x

L
, y′ =

y

L
, z′ =

z

L
(23.2.4)
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In other words, by so doing, then Ldx′ = dx, Ldy′ = dy, and Ldz′ = dz, and

∂

∂x
=

1

L

∂

∂x′
,

∂

∂y
=

1

L

∂

∂y′
,

∂

∂z
=

1

L

∂

∂z′
(23.2.5)

In this manner, ∇ = 1
L∇
′ where ∇′ is dimensionless; or ∇ will be very large when it operates

on fields that vary on the length scale of very small L, where ∇′ will not be large because it
is in coordinates normalized with respect to L.

Then, the first two of Maxwell’s equations become

1

L
∇′ ×E = −jωµ0H (23.2.6)

1

L
∇′ ×H = jωε0E + J (23.2.7)

Here, we still have apples and oranges to compare with since E and H have different units;
we cannot compare quantities if they have different units. For instance, the ratio of E to the
H field has a dimension of impedance. To bring them to the same unit, we define a new E′

such that

η0E
′ = E (23.2.8)

where η0 =
√
µ0/ε0

∼= 377 ohms in vacuum. In this manner, the new E′ has the same unit
as the H field. Then, (23.2.6) and (23.2.7) become

η0

L
∇′ ×E′ = −jωµ0H (23.2.9)

1

L
∇′ ×H = jωε0η0E

′ + J (23.2.10)

With this change, the above can be rearranged to become

∇′ ×E′ = −jωµ0
L

η0
H (23.2.11)

∇′ ×H = jωε0η0LE′ + LJ (23.2.12)

By letting η0 =
√
µ0/ε0, the above can be further simplified to become

∇′ ×E′ = −j ω
c0
LH (23.2.13)

∇′ ×H = j
ω

c0
LE′ + LJ (23.2.14)

Notice now that in the above, H, E′, and LJ have the same unit, and ∇′ is dimensionless
and is of order one, and ωL/c0 is also dimensionless.

Therefore, one can compare terms, and ignore the frequency dependent jω term when

ω

c0
L� 1 (23.2.15)
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or when

2π
L

λ0
� 1 (23.2.16)

Consequently, the above criteria are for the validity of the static approximation when the time-
derivative terms in Maxwell’s equations can be ignored. When these criteria are satisfied, then
Maxwell’s equations can be simplified to and approximated by the following equations

∇′ ×E′ = 0 (23.2.17)

∇′ ×H = LJ (23.2.18)

which are the static equations, Faraday’s law and Ampere’s law of electromagnetic theory.
They can be solved together with Gauss’ laws.

In other words, one can solve, even in optics, where ω is humongous or the wavelength
very short, using static analysis if the size of the object L is much smaller than the optical
wavelength. This is illustrated in the field of nano-optics with a plasmonic nanoparticle. If
the particle is small enough compared to wavelength of the light, electrostatic analysis can be
used. For instance, the wavelength of blue light is about 400 nm, and 10 nm nano-particles can
be made. (Even the ancient Romans could make them!) And hence, static electromagnetic
theory can be used to analyze the wave-particle interaction. This was done in one of the
homeworks. Figure 23.2 shows an incident light whose wavelength is much longer than the
size of the particle. The incident field induces an electric dipole moment on the particle,
whose external field can be written as

Es = (r̂2 cos θ + θ̂ sin θ)
(a
r

)3

Es (23.2.19)

while the incident field and the interior field to the particle can be expressed as

E0 = ẑE0 = (r̂ cos θ − θ̂ sin θ)E0 (23.2.20)

Ei = ẑEi = (r̂ cos θ − θ̂ sin θ)Ei (23.2.21)

By matching boundary conditions, as was done in the homework, it can be shown that

Es =
εs − ε
εs + 2ε

E0 (23.2.22)

Ei =
3ε

εs + 2ε
E0 (23.2.23)

For a plasmonic nano-particle, the particle medium behaves like a plasma, and εs in the above
can be negative, making the denominators of the above expression close to zero. Therefore,
the amplitude of the internal and scattered fields can be very large when this happens, and
the nano-particles will glitter in the presence of light.

Figure 23.3 shows a nano-particle induced in plasmonic oscillation by a light wave. Figure
23.4 shows that different color fluids can be obtained by immersing nano-particles in fluids
with different background permittivity causing the plasmonic particles to resonate at different
frequencies.
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Figure 23.2: A plane electromagnetic wave incident on a particle. When the particle size is
small compared to wavelength, static analysis can be used to solve this problem (courtesy of
Kong [31]).

Figure 23.3: A nano-particle undergoing electromagnetic oscillation when an electromagnetic
wave impinges on it (courtesy of sigmaaldric.com).
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Figure 23.4: Different color fluids containing nano-particles can be obtained by changing the
permittivity of the background fluids (courtesy of nanocomposix.com).

In (23.2.16), this criterion has been expressed in terms of the dimension of the object
L compared to the wavelength λ0. Alternatively, we can express this criterion in terms of
transit time. The transit time for an electromagnetic wave to traverse an object of size L
is τ = L/c0 and ω = 2π/T where T is the period of one time-harmonic oscillation. Hence,
(23.2.15) can be re-expressed as

2πτ

T
� 1 (23.2.24)

The above implies that if the transit time τ needed for the electromagnetic field to traverse
the object of length L is much small than the period of oscillation of the electromagnetic
field, then static theory can be used.

The finite speed of light gives rise to delay or retardation of electromagnetic signal when
it propagates through space. When this retardation effect can be ignored, then static elec-
tromagnetic theory can be used. In other words, if the speed of light had been infinite, then
there would be no retardation effect, and static electromagnetic theory could always be used.
Alternatively, the infinite speed of light will give rise to infinite wavelength, and criterion
(23.2.16) will always be satisfied, and static theory prevails.

23.2.1 Quasi-Static Electromagnetic Theory

In closing, we would like to make one more remark. The right-hand side of (23.2.11), which
is Faraday’s law, is essential for capturing the physical mechanism of an inductor and flux
linkage. And yet, if we drop it, there will be no inductor in this world. To understand this
dilemma, let us rewrite (23.2.11) in integral form, namely,

˛
C

E′ · dl = −jωµ0
L

η0

¨
S

dS ·H (23.2.25)
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In the inductor, the right-hand side has been amplified by multiple turns, effectively increasing
S, the flux linkage area. Or one can think of an inductor as having a much longer effective
length Leff when untwined so as to compensate for decreasing frequency ω. Hence, the
importance of flux linkage or the inductor in circuit theory is not diminished unless ω = 0.

By the same token, displacement current can be enlarged by using capacitors. In this
case, even when no electric current J flows through the capacitor, displacement current flows
and the generalized Ampere’s law becomes

˛
C

H · dl = jωεη0L

¨
S

dS ·E′ (23.2.26)

The displacement in a capacitor cannot be ignored unless ω = 0. Therefore, when ω 6= 0,
or in quasi-static case, inductors and capacitors in circuit theory are important as we shall
study next. In summary, the full physics of Maxwell’s equations is not lost in circuit theory:
the induction term in Faraday’s law, and the displacement current in Ampere’s law are still
retained. That explains the success of circuit theory in electromagnetic engineering!
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